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Abstract. In the present work, a generalisation of the Dirac-Kronig-Penney model for 
polyatomic crystals has been developed. The crystal potential is taken as a periodic array of 
&function potentials. with several &functions of different strength in each unit cell. The 
dispersion law of Dirac electrons in such a poiential is found in a closed form. 

In a recent paper (Eldib et a2 1987), the well known Kronig-Penney model has been 
generalised to be applicable for polyatomic crystals, containing M different atoms in the 
unit cell. Nevertheless. relativistic effects in the band structure have not been considered 
in the above-mentiofied mode;. These effects can be important at high energies on the 
electrons in solids consisting of heavy atoms (for a review on relativistic electrons in one- 
dimerisional systems, see Roy (1986)). Relativistic electronic states in diatomic (equally 
spaced atoms) crystals have been discussed in an earlier paper by Sen Gupta (1974). The 
aim of the present work is to generalise the Dirac-Kronig-Penney model for polyatomic 
crystals, taking into account relativistic effects. 

A number of researchers have treated &function potentials with the Dirac equation 
(Sutherland and Mattis (1981) and McKellar and Stephenson (1987), and references 
therein). It has also been noted that the solution obtained by solving the Dirac equation 
for a &function potential, and the expression attained when considering the limiting 
case of a square well (or barrier) are different. Fairbairn et a1 (1973) argued that this 
disagreement is related to the Klein paradox. In the above-mentioned work. McKellar 
and Stephenson have shown a reasonable way to use &function potentials with the one- 
dimensional Dirac equation. For electrostatic-type potentials which approach a 6- 
function limit (located at xo) ,  they found the following boundary condition for the two- 
component electron wavefunction (in the standard representation) : 

r 

A being the strength of the potential. 

under the action of the crystal potential 
We shall use the boundary condition (1) tc  find the dispersion law of Dirac electrons 
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where the ‘atomic’ potentials are taken as Vu(x) -+ A,6(x), with A, > 0. The position 
of each ion in the unit celi is denoted by R,, and L is the lattice parameter. The Bloch 
theorem is as follows: 

+i(x> = exP(iKxx)v(x) (3) 
q ( x )  being a two-component periodic function, with the same period as the crystal 
lattice. Therefore, it suffices to find q ( x )  within the unit cell [0, L] .  The function q(x) 
satisfies the equation (Dominguez-Adame 1987) 

[-ihcu,(a, + iK) + uzmc2 + V,(x) - E ( ~ ) ] q ( x )  = O (4) 

U, and U, being the usual 2 x 2 Pauli matrices. The solution of this equation is readily 
found 

exP (i TX) 
E-’  exp(iqx) - -E- ’  exp( -iyx) 

, u = O , l ,  . . . ,  M 

exp( - iqx) 
q, (x) = exp( -iKx) 

R,u < x  R,+1 

with Ro = 0 and L.  For simplicity, we have introduced the notation yhc = 
( E 2  - m2c4)’’’ and E* = ( E  + mc2)/(E - mc2). P ,  denotes here a two-component con- 
stant vector. After applying the boundary condition (1) at each R,, we obtain 

P , U , l  = D,(q)P, y = 1 , 2 , .  . . . M ( 6 )  
where 

with 

a,(q) = cos(A,/hc) - i(E/qhc) sin(A,/hc) 

B,(q) = -i(mc2/qhc) sin(Au/hc) exp(-2iqRP). 
(8) 

It is interesting to nore that det//D,(q)li = 1; we shs:: iise this properpj Se!ow.  he 
periodicity of q(x) leads to the condition 

Ip1 [o exP(iVL) 

1 
exp(-iyL) 0 

P,v-l = exp(iKL) 

and by successive use of equation (6) we immediately infer that 

B ,  =GP, exp(iKL) 

(9) 

where we have defined G = G(y) = DAv(y)D,w-l(q) . . . Dl(q). This 2 x 2 matrix has 
interestingproperties, namelydetllGll = 1, G;, = G22 and G;, = GI2 ,  ascan be readily 
verified from the properties of D,(q). The consistency of equation (10) and the afore- 
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mentioned properties of G give us the required dispersion law of Cirac electrons in the 
crystal potential: 

c o s ( ~ L )  = ReGII  cos(q1) - Im Gll  sin(yL) (11) 
where Re z and Im z indicate real and imaginary parts, respectively, of the complex 
number z .  Note that we must evaluate only one element of the matrix G. The solution 
of the dispersion relation E(K)  has to be found numerically, for any arbitrary value of 
M .  

If only a few atoms are piaced in the unit ceIi of the crystal, the dispersion law (11) 
can be written in a more simplified form. For monatomic crystals, we have G,, = ~ ( q )  
so that 

c o s ( ~ L )  = cos(qL) cos(A/fic) + (E/qhc) sin(yL) sin(A/hc). (12) 

This expression has formerly been proposed by McKellar and Stephenson for the Dirac- 
Kronig-Penney model. It should be observed that, as c+  x ,  equation (12) approaches 
the non-relativistic Kronig-Penney result. 

If we now place two different atoms in each unit cell. we have Gll = a1(q)cy2(~) + 
/3: (q )P2(q) .  Therefore, the relativistic dispersion law for diatomic crystals is found to 
be 

cos (~L)  = cos(qL) cos[(A, + A2)/hc] + (Elqhc) sin(r7-L) sin[(A, + A2)/hc] 

+ 2(m~’ /yhc)~  sin(A , /hc) sin(A,/hc) 

X sin[q(R, - R I ) ]  sin[q(L - R2 + RI) ]  (13) 
which reduces to equation (12) as A, = 0. The non-relativistic limit can be written as 

c o s ( ~ L )  = cos(q1) + [m(A, + A2)/qh2] sin(yL) 

+ 2A,A2(m/yh2)? sin[y(R, - R , ) ]  sin[q(L - R ,  + R I ) ] .  (14) 

This is the expression obtained by Eldib et a1 who solved directly the Schrodinger 
equation for the crystal potential (2). 

In a similar way. the dispersion relation for triatomic crystals ( M  = 3) is found to be 

c o s ( ~ L )  = cos(yL) cos[(A, + A Z  + A3)/hc] + (E/qhc)  sin(qL) 

X sin[(Al + A? + A3),/hc] + 2(m~~/ql ic )~{cos(A~/hc)  sin(A,/hc) 

X sin(A3/hc) sin[q(R, - R,)]  sin[q(L- R ,  + R 2 ) ]  + sin(A,/hc) 

X cos(A,/hc) sin(Aj/hc) sin[q(R3 - R I ) ]  sin[q(L - R 3  + R I ) ]  

+ sin(Al/hc) sin(A2/hc) cos(A,/hc) sin[q(R2 - R , ) ]  

X sin[y(L - R ,  + R , ) ]  + 2(E/qhc) sin(Al/hc) sin(A,/hc) 

X sin (A3/hc) sin[q(R, - R 2 ) ]  sin[y(R, - RI) ]  

X sin[q(L - R ,  + R , ) ] }  (15) 

which reduces again to the results of Eldib et a1 in the non-relativistic limit. 
In summary, we have generalised the Dirac-Kronig-Penney model for polyatomic 

crystals containing M atoms in each unit cell. The treatment given above may be regarded 
only as asimple but very instructiveway to study relativistic effectsin polyatomiccrystals. 
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